LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

$\mathbf{M}.\mathbf{Sc}.$ Degree examination - $\mathbf{MATHEMATICS}$

THIRD SEMESTER - NOVEMBER 2011

MT 3812 - CLASSICAL MECHANICS

Co.	DOCENT LOW VESTED	
	Date: 04-11-2011 Dept. No. Max.: 100 Marks Time: 9:00 - 12:00	
Ar	nswer ALL the questions	
1.	a. State and prove the principle of virtual work OR	
	b. How many different ways can an object move?	
		[5]
	c. Derive the Lagrange's equation of motion and find the differential equation of motion of a simple pendulum of length l.	
	OR	
	d. Classify the constraints with reasons for the following cases	
	i. A bead moving on a circular wire.ii. A sphere rolling down a rough inclined plane without slipping.	
	iii. The molecules moving inside a gas container.	
		[15]
02.	. a. State and prove Legendre transformation	
	OR b. Using the Routh's function find the equation of motion a particle in the central force field.	
	c. State Hamilton's principle and deduce Lagrange's equation from Hamilton's principle. And her find the equation of one dimension Harmonic oscillator.	[5] nce
	OR	
	d. Find the solution of the Brachistochrone problem by the method of calculus of variations and hence prove that shortest distance between two points in a plane is a straight line.	
	rs	3+ 7]
3.a	a .Derive Hamilton's principle of least action.	,,,,
	OR	
ł	b. Derive canonical equation of motion in terms of Poisson bracket.	r = 1
C	e. State and prove Jacobi's identity.	[5]
	OR	
Ċ	d. Discuss about the motion of a top by using i. Lagrange's method	
	ii. Hamilton's method	3+71
	17	>± /

04.a. Derive the transformation equation for infinite decimal contact transformation in terms of l	Poisson		
bracket OR			
b. State and prove Liouvilli's theorem.			
c. Derive the conservation theorem of angular momentum using infinite decimal contact transformation and hence prove that $[L_x, L_y] = L_z$	[5]		
OR d. Derive the Hamilton – Jacobi equation for the Hamilton's principle function S			
a. 2 cm/c the manner vaccor equation for the manner of principle function of	[8+7]		
05. a. Distinguish between Principal function and Characteristic function. OR			
b. Find the action and angle variable for simple Harmonic Oscillator			
c. Derive the Hamilton – Jacobi equation for the Hamilton's characteristic function \mathbf{OR}	[5]		
d. Discuss Kepler's problem using action angle variable.			
	[15]		
